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Abstract—A challenge of great interest to energy providers is
to precisely detect demand response events and quantify load
adjustments from historical data on building energy usage. We
achieve a state-of-the-art F1 score and a competitive NMAE
score at this task in three steps: (1) leverage a Daily Classifier
to detect the days that contain a Demand Response event, (2)
apply a Mapping Function to obtain 15-minute interval detec-
tions of the Demand Response Flag, and finally (3) estimate
Demand Response Capacity at 15-minute intervals with our
Power Regression Model. This generalizable, context-aware
framework enables energy providers to confidently back-cast
on their diverse historical data to measure how much load
was adjusted by the buildings, facilitating the assessment of
demand response behavior.

1. Introduction

The problem statement is as follows, paraphrased
from the FlexTrack Challenge 2025 overview webpage
https://www.aicrowd.com/challenges/flextrack-challenge-
2025.

A Demand Response (DR) event is when a building
increases, decreases, or shifts its power consumption within
a day to benefit the grid. Given a historical time-series data
set of building energy usage, dry bulb temperature, and
global horizontal radiation at 15-minute intervals, we are
to back-cast on the data to:

o Detect the time periods in which DR events oc-
curred.

¢ Quantify the energy that was flexed by the building
for each 15-minute interval within such events.

To achieve the first bullet point, each 15-minute interval
must be classified as one of three Demand Response Flags
(DRFs): 0 denotes no demand response, while —1 and +1
denote a requested decrease or increase in the building’s
load, respectively. This subtask is evaluated using F1 and
Geometric Mean scoring.

To achieve the second bullet point, we estimate the De-
mand Response Capacity in kilowatts which can be either
negative or positive. This is evaluated using Normalized
Mean Absolute Error (NMAE) and Normalized Root Mean
Squared Error (NRMSE) as defined on the competition
website.
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We note that our models are non-causal, meaning that
when the model predicts for time %, it is allowed to “look
ahead” and use data from time ¢; > ty to influence its
prediction. This is permitted because the entire data set is
considered historical to simulate the real-world scenario in
which a building’s historical DR events are to be assessed.

We propose two novel machine learning models to tackle
this problem: (1) the Daily Classifier that detects days with
Demand Response and (2) the Power Regression Model that
indirectly calculates Demand Response Capacity by estimat-
ing the expected baseline power at 15-minute intervals. Our
code is made publicly available at this GitHub repo.
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Figure 1. DRFs follow an intra-day pattern based on the day’s DR event
type (decrease, increase, shift, or no DR event). We achieve the highest
Fl-score in the competition by following two steps: (1) detect which DR
event type has occurred (if any) for each day, and (2) have our Mapping
Function output a DRF of —1 or +1 within the shaded yellow regions as
described in Section The curves in the figure are the mean of the
true DRFs from the training data set grouped by DR event type, site, and
time of day. No grouping contains both —1 and +1 DRFs.
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2. Methods

Algorithm [I] provides a high-level outline of our entire
machine learning pipeline. In later sections we cover all the
specifics such as the feature sets, mapping function, post
processing, etc.

Algorithm 1 High-level outline of our solution. fo is
the Daily Classifier. fr is the Power Regression Model.
d is a given day and t is a given 15-minute inter-
val. g4 is the DR Event classification for day d, while
Ya = [Yd1,Yd2,---,Yd06] is an array of DRF classifica-
tions for day d. These are further explained in Section|2.2.1

Require: Training data Dy, and test data Dy from the
competition, and set of test sites Sy

1: D} .. < feature_engineering(Diin )
2: Dy, + feature_engineering(Dieg)
3: Train fc using Dy,
4 Jd fC( test)
5: ¥4 < mapping_function(g4) // Map Daily to Interval
6: Partition D}, by site into subsets {D{e(:t) 5 € Sest}
7: for each partltlon D, (S[) do
8:  Train f on Dtej filtered to 3 A(S) =0
o i (B i
‘ Cap(s) 0, if yd?t =0
10: }/t — }/tPOW(S) B }}tPow(s)7 otherwise
11: end for

2.1. Data Preparation

Our models only process the features corresponding to
a timestamp within the time 10:00 to 17:59 of each day
because we observe that demand response events occur only
during this time window. For a similar reason, our solution
does not predict any demand response for the months of
March, April, May, September, October, and November. If
the grid were to decide that the future may call for demand
response events at new times of day or for new months,
then our code can easily be modified to allow for predicting
during those new times and dates.

We do not exclude holidays or extremely high/low val-
ues of power from our training and testing sets because we
noticed negligible differences by doing so.

2.2. Daily Classifier Model

2.2.1. Model Design. The end goal of this model is to
classify the Demand Response Flag (DRF) for every times-
tamp. Although the timestamps are formatted in /5-minute
intervals, we design our classifier model to predict one value
per day, which we call the DR Event Type. This value
denotes whether on this day a decrease, increase, or shift
in load is requested by the grid, or if no DR is requested.
This prediction is subsequently mapped to an array of 15-
minute interval predictions using our Mapping Function.
Formally, let the set of possible 15-minute DRFs be

y - {_1707 1}7

as defined in the competition overview. Let the sequence of
DRFs for day d be

Yd = [Yd,1,Yd2s - > Ydo6)s Yt €V,

where each element corresponds to a 15-minute interval.
The set of unique DRFs for day d is defined as
Uy = unique(yq) C V.
We define the corresponding DR Event Type as

-1, if Uy ={0,—1} (a decrease in load),
0, if Uy = {0} (no demand response),
1, if Uy = {0,1} (an increase in load),
2, if Uy = {-1,0,1} (a shift in load).

Ya

Finally, let fo denote the Daily Classifier model that
maps an input feature vector x4 (representing the features
corresponding to day d) to a discrete prediction:

fC(Xd) = @d € {71,07 1,2}.

Our algorithm of choice for f¢ is the Extreme Gradient
Boosting (XGBoost) classifier [1]]. Since XGBoost cannot
directly predict negative class labels, it predicts values in
the set {0, 1, 2,3}, from which we subtract 1 to obtain the
desired label range.

2.2.2. Mapping Function. After fo predicts the DR Event
Type 14 for each day of the test set, we map these daily
classifications to ¥4 = [Jd.1,Yd.2; - - - » Ud,06), an array of 15-
minute interval DRF classifications for an entire day. The
mapping works as follows:

e yq = —1: The day receives a —1 DRF prediction
from 12:00 to 17:59, and O at all other times.

e yq = 0: The day receives a 0 DRF prediction for the
entire day.

e yq = 1: The day receives a 1 DRF prediction from
12:00 to 17:59, and 0 at all other times.

e yq = 2: The day receives a 1 DRF prediction from
10:15 to 11:59, a —1 from 12:00 to 17:59, and O at
all other times.

This mapping is visualized by the yellow shaded regions
in Figure

2.2.3. Organization of the Training Data. We train our
Daily Classifier using all sites containing labeled DRFs (i.e.
sites A, B, C and D). After doing so, the Daily Classifier
is ready to receive input features to predict for any site.
We perform array aggregation of the 15-minute interval
features within each day before passing that array to the
Daily Classifier as input. Within this array, the order of the
features does not matter as long as it remains fixed. We over-
sample the minority classes (DR Event Type values —1, 1
and 2) using SMOTE [2] with random seed 94.



2.2.4. Features.
o Classifier Features:

— temp_corr_dev,
power_zscore_sh_diff_t,
power_zscore_sh_diff_wdt,
power_zscore_sh_peek_diff,
power_zscore_sh_diff,
power_zscore_sh_peek_diff t,
power_zscore_sh_hourly_std,
power_share_zscore_sh,
power_share_zscore_sh_diff,
power_share_zscore_sh_diff_t,
power_share_zscore_sh_diff_wdt,
power_share_zscore_sh_peek_diff,
power_share_zscore_st_hourly_std,
power_zscore_sh_peek4_diff,
power_zscore_sh_lag4_diff,
power_share_zscore_sh_peek4_diff,
power_share_zscore_sh_lag4_diff,
power_share_zscore_st_peek4_diff_t, season,
month

power_zscore_sh,

o Feature Partitions

t: time

—  h: hour

— wd: day of week
m: month

S: season

o Feature Explanations

— Power Share: The power of that row divided
by the sum of power within a day’s working
hours (10:00-17:45).

—  Corr: Weather variable’s correlation to power
for the site

— Corr Dev: Weather variable’s correlation to
power multiplied by the deviation in weather
variable from site’s median for monthly or
seasonal partition

— Diff: The difference in a feature from the
previous value of that partition.

2.2.5. Intuition of Model Design. The benefits of pre-
dicting Demand Response Flags using this Daily Classifier
rather than a /5-minute interval classifier are:

o Wider context is visible to the model. At the 15-
minute interval level of granularity, features can be
noisy and misleading, as the broader picture is not
visible. For example, it is possible for the DRF to
be —1 while Demand Response Capacity is actually
positive (this occurs in 263 timestamps in the train
data set of sites A, B and C). “Zooming out” to the
entire day provides greater context for the model,
allowing it to consider the ‘“shape” of the load
throughout the day - reducing the likelihood that
those noisy timestamps will be misclassified.

« Facilitation of creating an ‘“intra-day shape” of
DRF predictions that resembles that of the true
flags. Figure |1| shows that when a DR event is
requested by the grid, the event lasts until 17:59
and its type (increase, decrease, or shift) does not
change or cancel within a day. For this reason, it
is appropriate for our Mapping Function to produce
such static patterns or “shapes” of DRF predictions
within each day. Although, the exact beginning time
of the event may still be misclassified — this is an
area for potential further improvement.

2.3. Power Regression Model

2.3.1. Brief Overview. Now that the test set has been
classified into periods with and without demand response,
we turn to estimating the Demand Response Capacity within
those periods of demand response. We leverage our Power
Regression Model fg to compute Y,"°*", the expected build-
ing power for time ¢t (at 15-minute granularity) were no
demand response event requested.

fR (xt) — S};Power

Thus, the estimated Demand Response Capacity is the
true building power minus expected building power:

~C it A~
}/t apacity __ }/tPower _ }/tPower

fr is an ensemble of three regression models, each with
their own unique set of features. We partition the test set by
site and train and run inference with this model within those
partitions.

2.3.2. Organization of the Training and Testing Data.

For site s, we train fr on the data corresponding to site s
on the days where 75 = 0. We subsequently predict on the
data for site s on the days where g4 # 0. Thus, thapacnyw
remains zero on days with no detected Demand Response
event.

2.3.3. Ensemble. We employ a weighted ensemble of XG-
Boost models, each trained with distinct feature subsets and
hyperparameter settings, where a dominant model provides a
robust global baseline and secondary models act as targeted
specialists that correct its systematic errors. This design
leverages hypothesis diversity and complementary feature
signals (temperature-based, irradiance-based, temporal lags,
etc.), producing less correlated errors and improved handling
of heteroskedasticity and regime shifts across sites and
hours. By combining models that prioritize different loss
characteristics and inductive biases, the ensemble preserves
the low bias of the best performer while using corrective
terms to reduce residual bias and variance, producing more
calibrated, generalizable, and interpretable capacity estima-
tions than any single model. The hyperparameters were
tuned with Optuna [3]. Feature selection was performed per
model using custom code.



TABLE 1. MODEL PERFORMANCE METRICS ON THE PRIVATE TEST SET, ORDERED BY NMAE ASCENDING.

Rank | Team or Participant Normalized MAE Normalized RMSE  Geometric Mean Score  F1 Score
1 flex_king 0.698 1.104 0.651 0.624
2 zch 0.706 1.107 0.651 0.629
3 WollongongOrBust 0.731 1.086 0.749 0.720
4 ningjia 0.779 1.052 0.743 0.702
5 DTU 0.889 1.233 0.637 0.581
6 improvers 0.890 1.175 0.578 0.523
7 pluto 0.915 1.229 0.711 0.629
8 liberifatali 0.940 1.285 0.563 0.487
9 Phaedrus 0.989 1.359 0.819 0.457
10 danglchris 0.991 1.223 0.618 0.532

2.3.4. Features.

o Time Features:

season, month, week, day_of_week, hour,
quarter_hour

e Weather Features:

temp, temp_lag, temp_lag2, temp_lag3,
temp_lag4, temp_median_mt, temp_peek,
temp_peek2, temp_power_corr_st,

temp_pull2, temp_pull3, temp_shift,

temp_shift3, temp_shift4, irr, irr_lag,
irr_lag2, irr_lag3, irr_lag4,

irr_median_mt, irr_median_st, irr_peek,
irr_peek2, irr_peek3, irr_peek4,
irr_power_corr_st, irr_power_corr_st_pab,
irr_pull, irr_pull2, irr_pull3, irr_pull4,

irr_shift, irr_shift2, irr_shift3, irr_shift4

e Power Features:

baseline_pow, li_feature, mean_usage_sdt,
mean_usage_sdt_corr_dev_st, usage_lag, us-
age_lag_dow,

usage_lag_dow?2, usage_peek, usage_peek2,
usage_peek_dow

o Feature Partitions

t: time

d: day of week

dow: day of week

m: month

S: season

pab: power above baseline

o Feature Explanations

li_feature: This is the value from time ¢ of
the linear interpolation of building power be-
tween time 9:45 and 18:15 of the day.

Lag: Past values partitioned by time

Peek: Future values partitioned by time
Shift: Past values of current date

Pull: Future values of current date

Corr: Weather variable’s correlation to power
for the site

Corr Dev: Weather variable’s correlation to
power multiplied by the deviation in weather

variable from site’s median for monthly or
seasonal partition

2.3.5. Post Processing. We apply simple, conservative
post-processing to the raw capacity estimations to ensure
operational validity: they are clipped to site-specific bounds
derived from observed maximum power in the training data
(limiting capacity to realistic percentages of each site’s
max), and rows with a +1 DREF classification are addition-
ally constrained so that they cannot produce negative capac-
ity values. These safeguards prevent implausible or unsafe
outputs, preserve consistency with historical behavior, and
reduce downstream risk from extreme or out-of-distribution
model errors.

3. Results and Discussion

3.1. Performance Metrics

The most notable achievement of our solution is that it
obtained the highest F1 score on the private test set out of
any team. This indicates that our classification pipeline (fc
and Mapping Function) is the state-of-the-art at detecting
historical demand response events, because it achieves the
best precision-recall trade-off across all three classes of
DREFs.

Furthermore, our solution achieved the second-highest
Geometric Mean score, the second-lowest NRMSE, and
the third-lowest NMAE on the private test set out of
any team. The NRMSE and NMAE scores prove that our
solution is highly competitive at estimating the Demand
Response Capacity.

A complete table of these metrics for the top ten teams
is shown in Table [1l

3.2. Computational Requirements

We used an AMD Ryzen 5 2600 processor and no GPU
for training and inference. The time and memory required by
our models to produce the third-place submission is listed in
Table 2] below. Our Daily Classifier fc takes 0.01 seconds
to perform inference on the entire private testing set
which contains 289,440 rows of data, or 3,015 days.



TABLE 2. TIME AND MEMORY REQUIRED BY MODELS fc AND fr TO
PRODUCE OUR THIRD-PLACE SOLUTION.

Model Phase Time (seconds) Max memory (MiB)

Training 21 1,070
fe Inference 0.01 1,110
Training 70 2,030
Ir Inference 0.5 1,900

3.3. Limitations

e As our models are non-causal, they cannot directly
be used to make real-time predictions for the current
moment. Instead, they would have to wait until the
current day ends before they can predict for the day.
Thus, a potential next step for our solution is to adapt
the code to allow real-time predictions.

e The predicted DRFs from the Mapping Function
may be incorrect during the first 1 or 2 hours of
the DR event even if our Daily Classifier correctly
classifies the DR event type. This can be seen in
Figure (1] For example, when the grid requests a
load decrease, the DRF can switch from 0 to —1
at any point between 11:00 and 13:00, while our
Mapping Function estimates that the switch occurs
at 12:00. Although we did not have success at using
machine learning to estimate the exact “start time”
of the DR event, this may be a potential next step
for improvement.

o The leaderboard in Table [T] suggests that our Power
Regression Model fg has further room for improve-
ment. We look forward to learning from the other
winning teams to potentially improve our solution
for the benefit of many.

4. Conclusion

Our solution advances the community’s ability to detect
historical Demand Response events, as seen by our state-
of-the-art F1 score. Furthermore, our competitive regression
scores suggest that we may have discovered potential im-
provements for the estimation of Demand Response Capac-
ity. Moving forward, we hope to (1) adapt this solution for
a causal, real-time scenario and (2) potentially collaborate
with other winning teams to make further performance im-
provements. We are grateful for the organizers and sponsors
of the Flextrack Challenge 2025 for fostering innovation that
will benefit future energy grids.
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